23 research outputs found

    Self-Attention Transducers for End-to-End Speech Recognition

    Full text link
    Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for speech recognition. RNNs are replaced with self-attention blocks, which are powerful to model long-term dependencies inside sequences and able to be efficiently parallelized. Furthermore, a path-aware regularization is proposed to assist SA-T to learn alignments and improve the performance. Additionally, a chunk-flow mechanism is utilized to achieve online decoding. All experiments are conducted on a Mandarin Chinese dataset AISHELL-1. The results demonstrate that our proposed approach achieves a 21.3% relative reduction in character error rate compared with the baseline RNN-T. In addition, the SA-T with chunk-flow mechanism can perform online decoding with only a little degradation of the performance

    Peak-First CTC: Reducing the Peak Latency of CTC Models by Applying Peak-First Regularization

    Full text link
    The CTC model has been widely applied to many application scenarios because of its simple structure, excellent performance, and fast inference speed. There are many peaks in the probability distribution predicted by the CTC models, and each peak represents a non-blank token. The recognition latency of CTC models can be reduced by encouraging the model to predict peaks earlier. Existing methods to reduce latency require modifying the transition relationship between tokens in the forward-backward algorithm, and the gradient calculation. Some of these methods even depend on the forced alignment results provided by other pretrained models. The above methods are complex to implement. To reduce the peak latency, we propose a simple and novel method named peak-first regularization, which utilizes a frame-wise knowledge distillation function to force the probability distribution of the CTC model to shift left along the time axis instead of directly modifying the calculation process of CTC loss and gradients. All the experiments are conducted on a Chinese Mandarin dataset AISHELL-1. We have verified the effectiveness of the proposed regularization on both streaming and non-streaming CTC models respectively. The results show that the proposed method can reduce the average peak latency by about 100 to 200 milliseconds with almost no degradation of recognition accuracy.Comment: Submitted to ICASSP 2023(5 pages, 2 figures
    corecore